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Modern processors rely on various speculative mechanisms to meet performance demand. Branch predictors

are one of the most important micro-architecture components to deliver performance. However, they have been

under heavy scrutiny because of recent side-channel attacks. Branch predictors are indexed using the PC and

recent branch histories. An adversary can manipulate these parameters to access and control the same branch

predictor entry that a victim uses. Recent Spectre attacks exploit this to set up speculative-execution-based

security attacks.

In this paper, we aim to mitigate branch predictor side-channels using two-level encryption. At the irst

level, we randomize the set-index by encrypting the PC using a per-context secret key. At the second level,

we encrypt the data in each branch predictor entry. While periodic key changes make the branch predictor

more secure, performance degradation can be signiicant. To alleviate performance degradation, we propose a

practical set update mechanism that also considers parallelism in multi-banked branch predictors. We show

that our mechanism exhibits only 1.0% and 0.2% performance degradation while changing keys every 10K and

50K cycles, respectively, which is much lower than other state-of-the-art approaches.

CCS Concepts: · Security and privacy → Side-channel analysis and countermeasures; · Computer

systems organization→ Architectures.
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1 INTRODUCTION

To meet the ever-increasing performance demand, modern processors rely on various speculative
mechanisms, including branch prediction, hardware prefetching, dynamic cache insertion and
replacement policies, and value prediction. These mechanisms use patterns from history to predict
future behaviors. To improve prediction accuracy, iner-grained information is often used for
training. In particular, we commonly use the instruction address, also known as the program
counter (PC) or instruction pointer (IP), because the program behavior from dynamic instances
of a given PC tend to be similar, while instructions associated with diferent PCs have distinct
behaviors.
Most speculative mechanisms, however, have become an inadvertent source of information

leakage, as seen from various side-channel attacks [9, 12, 18, 22, 23, 38, 45]. With the prevalence of
public cloud computing, the operating system can be compromised in some hostile environments,
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2 Lee et al.

which makes security attacks even easier. Branch predictors are one of the earliest discovered
and frequently targeted side-channels [8, 9, 21, 22, 50]. They can be vulnerable because diferent
contexts1 share them within the same physical core. Branch predictors are typically indexed using
the PC and recent branch histories. An adversary can control a branch predictor entry that a
victim uses by deliberately manipulating the PC and the branch histories. Through this collision-
based attack, the adversary can steer the control low [20] or steal information from the branch
predictor [9].

To make the branch predictor more secure, we can encrypt information using per-context keys.
Because of the vulnerability of static encryption, as shown in [23], encryption keys should be
changed periodically. Upon key changes, however, we lose all trained information unless (1) we
re-encrypt all relevant entries with the new key, which can be very time-consuming, or (2) we can
decrypt each piece of information with the exact old key, which may require a signiicant amount of
book-keepings. Naïvely updating entries requires non-trivial hardware overhead and may increase
the branch prediction latency. The branch predictor is one of the busiest micro-architecture units
in the core pipeline because it can be speculatively accessed when an instruction is fetched [27].
Thus, we cannot aford any extra latency to branch prediction because of the timing criticality.

In this paper, we propose a two-level encryption scheme where both the index and the data
(targets and directions) of the branch predictors are encrypted using separate schemes. If we encrypt
the data only, collisions are still possible, and, thus, even if the key changes, the attacker can extract
information and eventually break the encryption. If we encrypt the index only, manipulated
collisions are less likely to occur, but we cannot use stronger encryption, as updating information
upon key changes incurs considerable hardware and performance overhead. In our scheme, we use
simple encryption at the irst level indexing, thus allowing for eicient swap-based set updates,
and we employ stronger data encryption at the second level to tighten security. To better utilize
the branch predictor under dynamic encryption, we focus on how to update all entries eiciently

with a new key. We also consider the bank-level-parallelism (BLP) in the branch predictor. Branch
predictor tables are often implemented using multiple banks to accommodate many entries with
multiple accesses in a cycle. The update process is a series of branch predictor read and write
operations, so bank conlicts increase the update latency. To exploit the BLP, we guarantee that
branch predictor sets from diferent banks will be swapped during the update process.
The contributions of our paper are as follows:

◦ We propose a two-level dynamic encryption mechanism to mitigate branch predictor side-
channels. We randomize branch predictor accesses and encrypt the data stored in the table.
◦ We propose an eicient bank-level-parallelism-aware set update mechanism to update branch
predictor entries upon key changes.
◦ We compare our mechanism against the Branch Retention Bufer (BRB) [43], the state-of-the-art
branch predictor side-channel mitigation, and our mechanism signiicantly outperforms BRB
with much smaller hardware overhead.
◦ Our update mechanism has negligible performance degradation while providing a more secure
branch prediction even with a very short epoch length.

2 BACKGROUND

2.1 Branch Predictor

Branch predictors have been widely studied for decades. Recent processors have multiple branch
prediction components providing prediction support for target, direction, indirect branch target,
loop, and return address. The branch target bufer (BTB) is used for branch target prediction.

1A context can be a thread or a process, but we do not diferentiate these unless noted.
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Securing Branch Predictors With Two-Level Encryption 3

Branch direction (taken or not taken) can be predicted using directional predictors [17, 25, 36, 48].
Each entry has a saturating counter, where the most signiicant bit (MSB) indicates the predicted
direction. We store return addresses in the return address stack (RAS) on function calls. Upon a
return instruction, which is an indirect jump, the return address is predicted by the top of the RAS.
There exist predictors for loops and indirect branches, where multiple branch targets exist for a
branch instruction. Figure 1 shows an overview of a typical modern branch predictor.

Directional Pred.
(Gshare, TAGE,

Perceptron)

Loop
Predictor

Branch Target
Buffer (BTB)

Return Address
Stack (RAS)

Branch History
Register

Hash

Tag          Set Bank
Byte
offset

Next

PCIndirect Branch
Predictor

PC

BHR

Fig. 1. Branch predictor overview.

To reduce prediction latency, we can access branch predictors at the fetch pipeline stage. Although
the instruction type is not known during the fetch stage, and uncovered only after the decode stage,
hitting in the BTB indicates that the fetched instruction is a branch instruction. We ind out the
target at the decode stage for direct branches and the execution stage for indirect branches. The
branch direction will be resolved at the execution stage for conditional branches.
To index into these predictors, we mainly use the PC and the branch history register (BHR)

that holds the recent global branch outcomes. For example, gshare [25] and TAGE [36] predictors
use the XOR value of the PC and the BHR. A larger branch predictor is needed to cover larger
instruction footprints. To support large structures with multiple accesses in a cycle, predictors are
often implemented using multiple banks with the most cost-efective single-ported RAM [37]. As
shown in Figure 1, the bank ID is usually acquired from the lower bits of the PC (after byte ofset)
to reduce bank conlicts in accesses from sequential PCs.

2.2 Branch Collision Atacks

Most side-channel attacks on the branch predictor exploit collisions. The branch predictor is typi-
cally shared by diferent contexts in the same physical core. As opposed to memory locations in data
caches and main memory that can be protected by address translation mechanisms, branch predictor
entries may not be protected for a context because branch predictor look-ups are performed before

or while the instruction translation look-aside bufer (TLB) is accessed. Also, to reduce storage
overhead, most structures store partial tags. As a result, an adversary can map its branch instruction
into the branch predictor entry that the victim uses by manipulating both PCs and branch histories.
Figure 2 shows an example of a branch collision. The PCs of the two branch instructions (BEQ

else) at 0x.....014 are almost identical except the two highest nibbles. Assuming the same branch
history, these instructions will be mapped to the same branch predictor entry. We will detail other
branch predictor side-channel attacks in Section 6.1.

2.3 Threat Model

In this work, we assume the following threat model:
◦ The branch predictor is shared by all contexts in the same physical core.
◦ Both victim and attacker applications reside in the same core but as separate processes. The
attacker tries to infer prior branch outcomes and⁄or to change the control low to its gadget code.
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4 Lee et al.

1 0x001...010: CMP R1, #0

2 0x001...014: BEQ else

3 0x001...xxx: ADD R2, R2, #1

4 0x001...xxx: B merge

5 else:

6 0x001...030: SUB R2, R2, #1

7 merge:

8 0x001...xxx: MOV R1, R2

(a) Victim

1 0xff1...010: CMP R1, R1

2 0xff1...014: BEQ else

3 0xff1...xxx: NOP

4 0xff1...xxx: B merge

5 else:

6 0xff1...030: NOP

7 merge:

8 0xff1...xxx: NOP

(b) Shadow

Fig. 2. Branch collision atack in [22].

◦ Some attacks rely on timing side-channel, i.e., measuring the timing diference of a certain
event. For high-bandwidth side-channel attacks, slowing down the victim application may be
necessary [4, 14, 18].

3 MITIGATING SIDE-CHANNEL ATTACKS TWO-LEVEL ENCRYPTION

We now describe our two-level dynamic encryption mechanism to mitigate branch predictor side-
channels. To make a prediction, we irst index (hash) into the predictor and then use data stored in
the table. The set-index and data are not orthogonal since the index function determines which entry
(data) to use. We aim to protect both index and data using encryption. We perform periodic key
updates to overcome the weakness of static encryption [23], which makes it necessary to re-index
the sets upon key changes. To tailor-make such a set update mechanism for the branch predictor,
we use exclusive-or (XOR)-based encryption for the set-indexing (ğ3.4). To further enhance the
security, we use stronger encryption for the data (ğ3.5) stored in the predictors.

3.1 How Two-Level Encryption Mitigate Side-channel Atacks

We use the PC to access all branch predictor tables. Encrypting the PC with a per-context secret key
provides index randomization for set-associative structures. Then, second-level data encryption
further improves security. Figure 3 shows an example of how encryption can prevent branch
collisions for the BTB. Without encryption, branch collisions can be easily created by setting similar
PCs (case 1). With encryption using secret keys per context, set indices are randomized, and the
target information is encrypted (case 2). It becomes very diicult to create collisions and, even if an
adversary manages to map to the same entry, the prediction information in the table cannot be
correctly decrypted without knowing the key.

// Instruction 1 (Process 0)
pc1 = 0x80d12054
target1 = 0x80d12064
key1 = 0x7f40f

// Instruction 2 (Process 1)
pc2 = 0x40d12054
target2 = 0x40d12080
key2 = 0x1c4a

// Set ID: PC[14:5], 10-bit
// Targ: Target[20:0], 21-bit No collision! Target encrypted as well. 

// Case 1. No encryption
set1 = (pc1>>5) & 0x3ff = 258
set2 = (pc2>>5) & 0x3ff = 258
targ1 = target1 & 0x1fffff = 0x112064
targ2 = target2 & 0x1fffff = 0x112080 

// Case 2. XOR encryption
set1 = ((pc1>>5)^key1) & 0x3ff = 269
set2 = ((pc2>>5)^key2) & 0x3ff = 328
targ1 = (target1^key1) & 0x1fffff = 0x16d46b
targ2 = (target2^key2) & 0x1fffff = 0x113cca  

Set collision!

Fig. 3. BTB encryption example.
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Securing Branch Predictors With Two-Level Encryption 5

We change the encryption key for each context once an epoch expires. An epoch is an execution
period during which the same encryption key, but diferent from other contexts, is used for a
context. The length of an epoch can be determined based on time-based (cycle counts or the
number of branch instructions) or pre-deined events, including context switches and interrupts.
These two types of epochs are not mutually exclusive, and it would be better to use together. An
epoch transition takes place when a timer expires or a pre-deined event occurs. Also, an epoch is
independently maintained per context, and the length of epoch has to be set to balance between
security risk and performance impact. If an epoch is too short, we may lose trained information
more frequently, thereby degrading performance. On the other hand, if an epoch is too long, the
risk of a security breach increases.

3.2 Limitation of Adopting CEASER for Branch Predictor

The fundamental idea of our index encryption mechanism and dynamic remapping resembles that
of CEASER [31, 32], which encrypts physical line addresses so that address-to-set mapping becomes
more diicult to identify. It performs periodic encryption key changes with dynamic remapping.
CEASER is efective in preventing conlict-based timing attacks, but it has two limitations that
prohibit its adoption for branch predictors.

PCA PCV

(a) No encryption

PCA
+

KeyS

PCV
+

KeyS

(b) Encryption with a shared key

PCA
+

KeyA

PCV
+

KeyV

(c) Encryption with per-context keys

Fig. 4. Address-to-set mapping example (A: atacker, V : victim, S : shared key).

The irst limitation is that encryption with a shared key cannot prevent branch collisions. For
example, in Figure 4, knowing the victim's virtual address (PCV ), the attacker can manipulate its
address (PCA) similarly. Without encryption (4a) and with the shared key encryption (4b), although
the mapping leads to diferent sets, addresses from the attacker and the victim collide in the same
entry. We overcome this limitation by maintaining per-context encryption keys (4c).
The second limitation comes from its update algorithm. CEASER uses incremental updates by

ascending set ID order. Cache lines in a set can be remapped to an arbitrary set. If a remapped line
incurs a cache eviction, we need to handle this line. We can stage the line in a temporary bufer
and perform another remapping. However, this may subsequently evict another line. We call this
a chained set update. Figure 5 shows the pseudo-code of a chained update algorithm. Note that
we assume a direct-mapped structure for simplicity. The chained update makes predeterminedly

knowing which sets have been updated almost impossible because the order of updated sets is very
random.2 One series of chain update will complete if NewSet (line 20) is previously updated. Then,
we can start a new series from the next not-yet-updated set (lines 10-15). This method may require
a 1-bit lag for each of the branch predictor sets (UpdateDone) to indicate that the corresponding

2This randomness is what many encryption mechanisms aim for by design.

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: 2020.



6 Lee et al.

1 // initialization

2 for (idx = 0; idx < NumSet; ++idx)

3 UpdateDone[idx] = false;

4

5 OldSet = 0;

6 Read(Buffer[0], Table[OldSet]);

7 while (true) {

8 if (UpdateDone[OldSet]) {

9 // find the next set to update

10 for (idx = 0; idx < NumSet; ++idx) {

11 if (!UpdateDone[idx]) {

12 OldSet = idx;

13 break;

14 }

15 }

16 if (UpdateDone[OldSet]) // all sets updated

17 break;

18 }

19 // read entries from the new set

20 NewSet = GetNewSet(OldSet, OldKey, NewKey);

21 Read(Buffer[1], Table[NewSet]);

22 // update and write the entry into new set

23 Update(Buffer[0]);

24 Write(Buffer[0], Table[NewSet]);

25 // prepare for next iteration

26 Swap(Buffer[0], Buffer[1]);

27 OldSet = NewSet;

28 }

Fig. 5. Pseudo-code of a (chained) set update mechanism.

set has been updated using a new encryption key for the current epoch. We need to check this
large per-set structure upon every predictor access, which incurs extra cycles to branch prediction
latencies. While this latency may be tolerable in the last-level cache, where CEASER was intended
to be used, the branch predictor is on a very timing-critical path, thus, adding extra latency to the
critical path will degrade the performance signiicantly. Also, this storage is not scalable with a
larger branch predictor.

3.3 BLP-aware Light-weight Set Update

The main problem of the naïve update mechanism in Figure 5 is that it requires a large per-
set structure (UpdateDone). To remove this structure, the identiication of updated sets should be
predetermined using a set ID and time information. For the branch predictor, a swap-based update
is preferable, i.e., OldSet and NewSet in Figure 5 are mutually exchanged during the update process.
In particular, we use XOR-based encryption, which is commonly used in error detection and simple
encryption. The XOR encryption enables a swap-based update because of its commutative and
associative properties (Equations 1-7). OldSet (Sett in Eq. 2 and Eq. 7) and NewSet (Sett+1 in Eq. 3
and Eq. 6) can be computed by simply XOR-ing with SwapKey (Eq. 8). Note that the following
equations are used for a context, where t and t + 1 are adjacent epochs, BHR is the content of the
branch history register, Set is the set id that PC is mapped, and Key is an encryption key. Each
context maintains its own encryption keys.
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Securing Branch Predictors With Two-Level Encryption 7

Index = PC[n1 : n2] ⊕ BHR (1)

Sett = Index ⊕ Keyt (2)

Sett+1 = Index ⊕ Keyt+1 (3)

Index = Sett ⊕ Keyt (4)

Sett+1 = (Sett ⊕ Keyt ) ⊕ Keyt+1 (5)

Sett+1 = Sett ⊕ (Keyt ⊕ Keyt+1) (6)

Sett = Seti+1 ⊕ (Keyt ⊕ Keyt+1) (7)

SwapKey = (Keyt ⊕ Keyt+1) (8)

The XOR-based encryption, however, does not automatically provide a predetermined update.
To provide predeterminism, we split an epoch into multiple sub-epochs and swap set t and its
complement set (t ⊕ SwapKey) in each sub-epoch t . However, naïvely setting SwapKey is problematic.
For example, if SwapKey is 0x4, as shown below, the swap in sub-epoch 4 will negate the update
performed at sub-epoch 0. As a result, no sets will be properly updated.

◦ Sub-epoch 0: swap sets 0 and 4 (0 ⊕ 4)
◦ Sub-epoch 1: swap sets 1 and 5 (1 ⊕ 4)
◦ ...
◦ Sub-epoch 4: swap sets 4 and 0 (4 ⊕ 4)

4

8

12

5

9

13

6

10

14

0 1 2 3

7

11

15

B0 B1 B2 B3

SwapConflict

(a) Set MSB swap

4

8

12

5

9

13

6

10

14

0 1 2 3

7

11

15

B0 B1 B2 B3

Swap

(b) Bank MSB swap

Fig. 6. BLP-aware swap-based set update.

To avoid this problem, we can always set the most signiicant bit (MSB) of SwapKey so that the MSB
of set IDs to swap will be diferent. However, this method cannot fully utilize bank-level-parallelism
(BLP). As explained in Section 2.1, the bank ID is acquired from lower PC bits. If we use the set-MSB
to swap, then bank conlicts may occur with a probability of 1

NumBank
. For example, assuming 16

entries with 4 banks, sets 0, 4, 8, and 12 belong to bank 0. In Figure 6a, the set-MSB swap maps set
0 to any set from 8 to 15. Mapping to either set 8 or 12 will cause bank conlicts. To utilize the BLP
fully, we always set the bank-MSB (the MSB of the bank ID) of SwapKey to 1 (Eq. 13), which is shown
in Figure 6b. To do so, we need to alternate the bank-MSB of encryption keys in every epoch by
clearing it in even-numbered epochs (Eq. 11) and setting it in odd-numbered epochs (Eq. 12).

BankSet = NumBank >> 1 (9)

BankClear = (NumSet − 1) ⊕ BankSet (10)

Seteven t = Index ⊕ (Keyt&BankClear ) (11)

Setodd t = Index ⊕ (Keyt | BankSet ) (12)

SwapKey = (Keyt ⊕ Keyt+1) | BankSet (13)

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: 2020.



8 Lee et al.

This bank-MSB swapping requires subtle changes in the sub-epoch mechanism. To provide
predeterminism while exploiting BLP, we want to iterate over all sets in banks 0 and 1. The order
of sets being updated will be 0, 4, 8, 12, 1, 5, 9, and 13, as seen in Figure 7a, which does not match
with simply ascending sub-epoch IDs. As a result, we need to translate sub-epoch IDs to actual set
IDs. Figure 7b shows a pseudo-code of the translation.

⃣ ⃣

Sub

epoch 

Set 

ID

0 0

1 4

2 8

3 12

4 1

5 5

6 9

7 13

4

8

12

5

9

13

0 1 3

7

11

15

Set IDs per banks

B0 B1 B3

Update order

(a) Sub-epoch and the order of updated sets.

1 int set_per_bank = NumSet / NumBank;

2 int SetToSEpoch(int set) {

3 int bank = set & (NumBank - 1);

4 return bank * set_per_bank +

(set>>log2(NumBank));

5 }

6 int SEpochToSet(int sub_epoch) {

7 int bank = (int)(sub_epoch / set_per_bank);

8 return (sub_epoch % set_per_bank) * NumBank

+ bank;

9 }

(b) Translation between sub-epoch and set IDs.

Fig. 7. The order of updated sets and translation between sub-epoch and set IDs.

Figure 8 shows an example of the swap-based set update with 4 banks using the bank-MSB. In
epoch 0, the encryption key b1101 (note that bit[1] is the bank-MSB and is cleared in even-numbered
epochs) is XOR-ed with set IDs. Sets 0 and 1 (highlighted) are mapped within the irst-half banks.
In epoch 1, the key is b1011 and the SwapKey b0110 (= b1101 ⊕ b1011) is used to swap. As a result,
sets 0, 6 and 1, 7 are swapped (0 ⊕ 6 = 6, 1 ⊕ 6 = 7).

4

8

12

5

9

13

6

10

14

0 1 2 3

7

11

15

Original mapping

9

5

1

8

4

0

11

7

3

13 12 15 14

10

6

2

Epoch 0

Key: b1101

SwapKey: NA

15

3

7

14

2

6

13

1

5

11 10 9 8

12

0

4

Epoch 1

Key: b1011

SwapKey: b0110

1

13

9

0

12

8

3

15

11

5 4 7 6

2

14

10

Epoch 2

Key: b0101

SwapKey: b1110

B0 B1 B2 B3 B0 B1 B2 B3 B0 B1 B2 B3 B0 B1 B2 B3

Fig. 8. Swap-based set update example.

3.4 Index Encryption: Puting It All Together

Figure 9a shows the pseudo-code of our BLP-aware set update mechanism (BSUP). To swap sets, a
sub-epoch goes through three phases: 1) read entries from two sets into the temporary bufer, 2)
perform re-encryption, and 3) write all entries back to the table. The simplest way to perform an
update is to block accesses to the corresponding two banks and quickly update all entries. However,
any branch prediction from these banks will not be available during the update process, which will
negatively afect performance. Instead, we can opportunistically read and write entries based on the
bank availability. Consequently, read and write phases have variable latencies based on bank access
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Securing Branch Predictors With Two-Level Encryption 9

patterns. Once all three phases complete, we move on to the next sub-epoch. A complete update
requires NumSet

2 sub-epochs. During an update, accesses to the set can still be serviceable either
from the main array or the temporary bufer. The arbitration logic of the branch predictor requires
changes accordingly, but the overhead will be trivial. A potential weakness of this mechanism is
that if an epoch transition occurs before all sets are updated because of either short epoch lengths
or epoch-terminating events, we will lose information from sets that are not updated. However,
this drawback applies to any encryption mechanism with very short epochs.

1 for (SubEpoch=0; SubEpoch<NumSet/2;

++SubEpoch) {

2 // real set id

3 OldSet = SEpochToSet(SubEpoch);

4 // complement set

5 NewSet = OldSet ^ SwapKey;

6

7 // Phase 1: Read

8 Read(Buffer[0], Table[OldSet]);

9 Read(Buffer[1], Table[NewSet]);

10

11 // Phase 2: Update

12 Update(Buffer[0]);

13 Update(Buffer[1]);

14

15 // Phase 3: Write

16 Write(Buffer[0], Table[NewSet]);

17 Write(Buffer[1], Table[OldSet]);

18 }

(a) Set update mechanism

1 int Index(int SetID, int SubEpoch) {

2 // alternate the bank MSB

3 if (EpochID % 2 == 1) {

4 OldKey = Key[Epoch-1] & BankClear;

5 NewKey = Key[Epoch] | BankSet;

6 } else {

7 OldKey = Key[Epoch-1] | BankSet;

8 NewKey = Key[Epoch] & BankClear;

9 }

10

11 OldSet = SetID ^ OldKey; // set IDs

12 NewSet = SetID ^ NewKey;

13 // sub-epoch IDs

14 OldSE = SetToSEpoch(OldSet);

15 NewSE = SetToSEpoch(NewSet);

16 SID = (OldSE >= (NumSet/2)) ? NewSE:

OldSE;

17 return SID < SubEpoch ? NewSet: OldSet;

18 }

(b) Set-index mechanism

Fig. 9. Sub-epoch based index encryption mechanism.

Figure 9b shows the set index mechanism. There are two set index candidates, one with the old
key (OldSet) and the other with the new key (NewSet). We can identify whether a set was updated by
comparing the set ID and the current sub-epoch ID. We irst translate the set ID to the sub-epoch
ID. If the translated sub-epoch ID (OldSE) is greater than the maximum sub-epoch ID (NumSet

2 − 1),
we use its complement ID (NewSE) instead. If the inal ID (SID) is less than current sub-epoch ID,
this set has been updated already, and we return NewSet. Otherwise, OldSet will be returned.

BSUP needs the following new structures and hardware changes.
◦ Random number generator (RNG): The success of any encryption relies heavily on the strong
random number generation, and most of the recent processors include stronger random number
generators [5, 7] for cryptography. Note that acquiring a random number from a hardware
RNG takes 110 ns in Intel's Kaby Lake-S microarchitecture [10]. The operating system maintains
random number generations and 110 ns is short enough not to require bufering random numbers.
◦ Key table: We use a 64-bit key and need to store two keys (previous and current) per context.
Keys are not directly readable by the context and not visible to other contexts. We need a 10-bit
index to access predictors, so we use XOR folding (e.g., key[0:9] ⊕ key[10:19] ⊕ key[20:29]).
These keys are used for data encryption in Section 3.5 as well.
◦ Epoch ID: We need to identify parity (even or odd) of epochs to alternate the bank-MSB for each
context.
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◦ Sub-epoch ID: We need to maintain a sub-epoch ID for each context. The sub-epoch ID will be
reset at the beginning of a new epoch, and the maximum value of sub-epoch ID is NumSet/2.
◦ Sub-epoch state: This indicates the current phase of a sub-epoch (0: read, 1: update, 2: write, 3:
done).
◦ Bufer: We need storage for two sets for each predictor tables (target and direction predictors).
Table 1 summarizes the hardware overhead of BSUP. We need to maintain the key table for

the maximum number of concurrent contexts, but other structures are for each simultaneous
multi-threading (SMT) threads in a core. If we support up to 32 contexts per core, it requires 654
bytes, which is 1.2% of the total branch predictor budget.

Table 1. The hardware overhead of BSUP.

Structure Size Context Thread

Key table 64b x 2 ✓

Epoch id 1b ✓

Sub-epoch id 10b ✓

Sub-epoch state 2b ✓

BTB sets 6B x 4way x 2 ✓

Bimodal sets 1B x 2 ✓

TAGE sets 3B x 2 x 15 ✓

Total 512B (up to 32 contexts) per core 141.7B per SMT thread

3.5 Data Encryption

XOR encryption does not guarantee strong protection in general. However, it enables a very eicient
set update mechanism to cope with dynamic key changes for indexing. To further improve security,
we add second-layer protection on the prediction data such as targets and prediction counters.
Note that tags can also be encrypted, but we do not consider it in this paper because of signiicant
changes in tag lookup logic. Unlike indexing that requires 1-cycle decryption, we can use a stronger
encryption algorithm for data because it needs to be decrypted at the end of the 3-stage branch
prediction pipeline. In other words, we can tolerate up to 2-cycle decryption latency for data. A
lightweight block-cipher (80-bit of storage and less than 2 clock cycles latency) was proposed in
CEASER [31] to encrypt 40-bit physical line address. A similar encryption scheme can be used.
Branch target encryption [13] can be done straightforwardly. We encrypt target upon update and
decrypt it before use. On the other hand, prediction counter update requires 1) read, 2) decrypt, 3)
update, 4) encrypt, and 5) write.
Figure 10 shows a schematic diagram of the branch predictor encryption. At cycle 0, we access

both BTB and TAGE predictors in parallel. The outcome from the TAGE predictor will be available
at cycle 2. Based on which level of the BTB the access hits in, the target will be available either at
the end of cycle 0 (L1) or at the end of cycle 1 (L2⁄3). Branches predicted taken will redirect the next
PC to the branch target at the end of cycle 3. Because we have two cycles to decrypt the target, as
far as the decryption latency is within two cycles, our scheme will not incur additional latency.

3.6 Security Analysis

In this section, we analyze how our mechanism improves the security of a branch predictor. We will
irst categorize various attacks types, describe how one can perform attacks, and provide analysis.
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Fig. 10. Branch predictor encryption schematic diagram.

3.6.1 Branch Predictor Side-channel Atack Category. We categorize existing branch predictor
attacks into three groups.

Category 1 To infer control low graph, earlier attacks against RSA [1ś3] tried to identify which
branch predictor entry was accessed by the victim. These attacks require sequential tra-
versal of the branch predictor. Since the adversary knows the victim's virtual addresses,
it becomes trivial to infer the control low.

Category 2 This category is similar to Category 1. BranchScope attack [9] extracts the branch
outcome of a speciic entry using a ine-grained Prime+Probe attack [26, 28, 41]. This
requires pin-pointed access to the entry.

Category 3 Steal control low under speculative execution: As seen from Spectre v1 (branch direc-
tion) and v2 (branch target) attacks [20], tainting branch predictors allows undesired
and wrong code sections to access privileged information. Then, another side-channel
such as a cache can complete the attack. This attack does not require a sophisticated
method since an attacker can blindly pollute all branch predictor entries.

3.6.2 How to identify branch outcome? We can directly read branch information if a processor
supports such capability, including Intel's LBR (last branch record) [16]. The LBR records 1) the
address of a branch instruction, 2) the target address, 3) the prediction information whether the
direction or target was mispredicted, and 4) the elapsed cycles between the branches. This can be
useful to 1) identify delinquent branches and 2) re-construct the control low information. However,
the LBR has two limitations: 1) information is recorded for taken branches only and 2) this does
not provide which set was mapped from a PC, which is essential to create collisions.
On the other hand, timing attacks such as Prime+Probe [26, 28, 41] and Flush+Reload [14, 47]

have been used to infer the address-to-set mapping for branch predictors [1ś3]. These methods rely
on sequentially searching table structures to measure diferences in access (execution) latency. For
example, from Prime+Probe cache attack, if a victim evicts a cache line that belongs to the attacker,
this results in a cache miss and a longer access latency. From the sequential search, we identify that
the N-th entry or set was accessed by the victim. As pointed out in [31], the encryption mechanism
improves security by obfuscating this sequential searching, so it makes the address-to-set mapping
more diicult to identify.

3.6.3 Eviction Set-based Analysis. As pointed out in [23, 31], attacks against the last-level cache
(LLC) are more challenging than against the L1 cache (and core structures) because of following
reasons: (1) probing the LLC is much slower than the L1 cache because of 1) larger size, 2) higher
associativity, and 3) longer latency and (2) while the L1 cache is virtually indexed, the LLC is
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physically indexed. Attackers have full control of virtual addresses, so it is trivial to control accesses
for the L1 cache. To overcome these challenges, eviction set-based attack was proposed [23]. Instead
of identifying a set-mapping function, this attack formed a random conlict set of which size is
greater than the associativity of the LLC and examined whether a cache miss occurs from any lines
after repetitive accesses. If an access to any line takes longer than other lines, the corresponding
line belongs to a conlict set. After some trials, the attack can create an eviction set. We perform a
similar security analysis done in [31] for the branch predictor using the following equations, where
N is the number of cache lines in the LLC, F is the fraction of cache lines, and R is the number of
trial rounds for reliable attacks.

Num_aceesses_to_f orm_an_evict ion_set = R × L2 (14)

L = F × N (15)

P (bin_has_B_balls ) =
e−λ · λB

B!
(16)

Using a bin-and-ball analysis (Eq. 16), an attack against a 16-way, 8MB LLC requires 42% of cache
lines to be accessed (F = 0.42) and needs ∼38000 accesses to create an eviction set.3 We applied a
similar analysis on the branch target bufer. With a 4-way, 4K-entry BTB, we identify that F = 0.19
and only ∼300 accesses are necessary to create an eviction set.4 Equations 14-16 show that the
security of a structure is proportional to the size and the associativity of the structure. For branch
predictors with smaller sizes and associativities than the LLC (number of sets: 1⁄8, associativity:
1⁄4), attacks against the branch predictor take 128x fewer accesses. Considering the shorter access
latency of the branch predictor, the efective time to create an eviction set will be three orders of
magnitude less.

3.6.4 Revisiting the Limitation of Encryption with Shared Key. When the index function is encrypted,
it obfuscates sequential traversal of a structure, identifying the address-to-set mapping becomes
more diicult (ğ3.6.3). However, as explained in Section 3.2, if the attacker and the victim share the
same key to encrypt information, the branch predictor is still vulnerable to side-channel attacks.
For Category 1 attacks, since sequential traversals are not possible, we can use an eviction-set,
and the attack needs only ∼300 accesses. For Category 2 and Category 3 attacks, the attacker can
immediately create collisions once virtual addresses are known. Therefore, we can reairm the
weakness of shared-key encryption mechanisms.

3.6.5 Security Analysis of BSUP. Maintaining separate encryption keys for diferent contexts can
further improve the security of the branch predictor. Creating an eviction set (ğ3.6.3) becomes more
complicated. As shown in Figure 4c, an eviction set from one context does not guarantee evictions
for another context because of the diferent keys and mappings. As a result, without knowing own
and victim's keys, Category 2 attacks become infeasible to exercise. However, an attacker can still
perform Category 3 attacks. To blindly poison (brute-force) all branch predictor entries, it requires
as many accesses as the number of entries.5 For our baseline coniguration in Table 3, the BTB
and TAGE predictors require 4096 and 1024 accesses, respectively. TAGE predictor [36] comprises
multiple tables, but the attack needs to taint the default bimodal predictor only.
Based on this observation, the index encryption alone is still not secure enough, and data

encryption can boost security. The BTB stores 47-bit branch targets. With the lack of encryption

3With a 16-way, 8MB LLC, we use R=2, N =8192, F=0.42, and B=17.
4With a 4-way, 4K-entry BTB, we use R=2, N =4096, F=0.19, and B=5.
5Note that although we provide the upper bound analysis, the attack may need fewer accesses.
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Table 2. Security analysis (✓: protected, ✗: not protected).

Scheme Category 1 Category 2 Category 3 (Spectre v1) Category 3 (Spectre v2)

No encryption ✗ ✗ ✗ ✗

Shared-key encryption [31] ✓ ✗ ✗ ✗

Index encryption (diferent keys) ✓ ✓ 1024 4096

BSUP ✓ ✓ 16384 ✓

key identiication, it is not practical to reverse-engineer the BTB encryption. Thus, Spectre v2
attacks can be mitigated. For Spectre v1 attacks, we encrypt 3-bit saturating counters in the TAGE
predictor. Since there are only 8 possible counter values, the attacker can assume 1 of 8 values
and train the TAGE table entries to have such value. To set a certain counter value, it requires two
accesses on average. Consequently, data encryption on TAGE demands 16 times more accesses to
taint. We summarized the security analysis in Table 2. BSUP is efective for Category 1, Category
2, and Spectre v2 attacks. Spectre v1 attacks require 16384 branch predictor accesses, which may
not be secure enough. This brute-force attack can hardly be protectable except by partitioning
the branch predictor, which requires a signiicant performance overhead. However, the attack
can be less practical because branch targets are always mis-predicted under data encryption,
which lengthens the attack duration.6 For stronger protection, we can combine other side-channel
mitigation schemes since Spectre v1 attacks must rely on additional side channels such as caches.

3.6.6 Other Discussions.

(1) Simultaneous Multi-Threading (SMT): In SMT processors, we need a selective update since
multiple threads can be running simultaneously in a core. We can embed full context IDs (8
to 12 bits) to diferentiate entries, which provides strong isolation among contexts. However,
the hardware overhead is too signiicant to be implemented. Using partial information will
weaken isolation. During an update for a context, we may encounter a mismatched number
of entries that belong to the context from two sets to swap. In this case, we can 1) discard
own surplus entries, which hurts its performance, or 2) evict entries from other contexts,
which afects the performance of other applications. We will leave this as future work.

(2) Based on how we deine a context, protection coverage and performance impact may vary.
For example, if we deine a context as a process, and if the victim and the attacker are in the
same process, we cannot protect the branch predictor since they use the same encryption
key. However, if we deine a context as a thread, even if the victim and the adversary are in
the same process, as far as they are separate threads, our protection scheme works. In this
case, benign multi-threaded applications will be impacted by halving the branch predictor
resources even if threads may have similar behaviors. If there are some Trojan gadget code
within the same thread, no protection can work. To consider this, there is an efort to isolate
each website in web browsers [33]. If pages originate from diferent websites, instead of
allowing them to share some hardware resources, putting them in diferent processes gives
natural protection.

(3) Upon context switches, we leave branch predictor entries intact, but the attacker cannot
exploit them unless they know both their own key and the victim's key, as explained in

6The target mis-prediction penalty will be proportional to the front-end pipeline depth (typically 5-6 cycles, but can be 10

cycles in a deeper microarchitecture). If we assume 20% of branches are taken, 20% x 5 cycles will be added to the CPI stack.

If an ideal CPI is ∼0.5 (IPC=2.0), the CPI will become 1.5.
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Section 3.6.2. Once the process is scheduled again, it can use entries using the old encryption
key and perform remapping with the new key.

4 EXPERIMENTAL METHODOLOGY

4.1 Simulator

We use a proprietary cycle-accurate execution-driven Arm AArch64 simulator for evaluation. The
simulator is used for CPU development and has been correlated against commercial CPUs. Table 3
shows the processor coniguration, which is intended to be generic.

Table 3. Processor configuration.

Core 3 GHz, 8-wide

Branch predictor TAGE [36]: 15 1024-entry direct-mapped tables, 4-bank

BTB

L1: 64 entry, fully associative

L2: 256 entry, fully associative

L3: 4096 entry, 4-way, 4-bank

Cache

L1: 64KB, 4-way, 4-cycle

L2: 1MB, 8-way, 11-cycle

L3: 8MB, 16-way, 34-cycle

Memory 90ns latency, 48GB⁄s bandwidth

4.2 Benchmarks and Evaluation Metric

We use SimPoints [29] with 30 million instruction intervals generated from single-threaded bench-
marks from SPEC 2000, 2006, and 2017 suites [39] and GeekBench [30] (a total of 102 applications).
We use the projected instruction per cycle (IPC) from weighted SimPoints as the performance
evaluation metric.

5 RESULTS

In this section, we evaluate the performance impact of the diferent mechanisms upon key changes:
◦ Reindex: Index is encrypted, but data in predictors is not encrypted. Leave stale information in the
table upon key changes.
◦ RI+Enc: Both index and data are encrypted. Leave encrypted information in the table upon key
changes.
◦ Reset: Reset all entries at the end of each epoch, which is similar to Time protection [11].
◦ BRB: No encryption. Although the original BRB mechanism [43] replicates only directional
predictors (bimodal and TAGE), we can apply a retention bufer to the BTB as well. As shown in
Table 3, our coniguration has 3 levels of BTBs, and we replicate the L1 and L2 BTBs for each
context, where one replication requires 1.88KB (6B x (64 + 256) entries). For TAGE, the bimodal
predictor and the TAGE table with the shortest history are replicated. This requires 4KB per
context (bimodal: 1B x 1024 entries, TAGE: 3B x 1024 entries). The original BRB implementation
uses Perceptron [17] as the default predictor, but we keep bimodal as in TAGE implementation
instead. BRB resets shared predictors upon context switches. A length of epoch emulates that of
context switches.
◦ BSUP: Our BLP-aware set update mechanism. Both index and data are encrypted. Update all entries
with the new key upon key changes.
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Note that we do not assume any speciic epoch length, but try to show the performance impact
of diferent epoch lengths. OS time slice can vary from a few ms to 10s of ms. As we explained in
Section 3.1, the epoch should terminate on pre-deined events as well as branch predictor activities.
As a result, we may perform multiple updates even within an OS time slice. We use cycle-based
epochs and sweep the length of epochs from 5000 to 1 million cycles. We do not simulate context
switches. The side-efect of context switches cannot be alleviated, except by resource partitioning.
We estimate the performance impact of context switches by varying epoch lengths.

5.1 BTB Results

In this section, we evaluate how the dynamic encryption of the BTB afects performance. As
explained in Section 2.1, the BTB is used for the branch target prediction, and it initiates early
branch prediction even before branch instructions are decoded. Consequently, penalizing the BTB
from the loss of prediction information can result in signiicant performance degradation. We
evaluate mechanisms on the L3 BTB while the L1 and the L2 BTBs are reset except for BRB.

Figure 11 shows the results. The main diference between Reindex and RI+Enc is that if encryption
keys within a short period map a PC to the same entry and the prediction information is still correct,
Reindex can reuse this entry. However, even though there is a matching entry, the reused entry in
RI+Enc will lead to a misprediction because of the encrypted target. RI+Enc and Reset show similar
results. However, RI+Enc may lead to more mispredictions (hit in the BTB, but content decrypted
with the wrong key), while Reset leads to no predictions (miss in the BTB) until re-trained. Figure 11a
shows that Reindex outperforms both RI+Enc and Reset across all epochs despite security concerns.
RI+Enc shows interesting results compared to Reset. Both schemes lose prediction information, but
RI+Enc has more mispredictions instead of no predictions than in Reset. BTB mispredictions lead to
pipeline lushes and have a greater penalty than notmaking predictions. BRB keeps the L1 and L2 BTB
entries, which can provide predictions after key changes. However, its performance improvement
over Reset is marginal, 2% and 1.5% improvement for 5K and 10K-cycle epochs, respectively. The
beneit of retaining tagged structures like the BTB can be less efective than tag-less structures
like the bimodal predictor because of the coverage. Tagged structures can greatly improve the
prediction accuracy by tagging an entry with ine-grain information, but tag-less structures provide
predictions for any access to the entry. Also, the target prediction has to be 100% accurate, but the
direction prediction has a 50% chance of being correct for an unbiased branch. As the epoch length
increases, we can amortize the performance penalty of losing trained information.
On the other hand, BSUP outperforms all schemes across all epoch lengths. Other than the

very short 5K-cycle epoch, BSUP shows almost no performance degradation. We observe 7.7%
performance degradation with 5K-cycle epochs. This is because the latency required to update all
sets is usually longer than 5000 cycles, so not all sets are being updated. Note that the minimum
update latency is 4608 cycles7 and the bank conlicts will increase the latency. Figure 11b shows
that the set update is completed for only 10-20% of all epochs in 5K-cycle epoch, thus we lose
part of the trained information. The average update latency in Figure 11c explains the low update
completion rate. The latency is longer than 5000 cycles in all suites, and 14 (out of 102) benchmarks
show longer than 10000-cycle latencies.8 As a result, it is almost impossible to complete the set
update within 5K-cycle epochs for most benchmarks and 10K-cycle epochs are not suicient for
13.7% of all benchmarks. Note that 500.perlbench shows the worst 34.4% performance degradation

7The update process for a sub-epoch requires 9 cycles for 4-way associative BTB (4 cycles: read, 1 cycle: update, 4 cycles:

write) and there are 512 (NumSet⁄2) sub-epochs.
8Branch-intensive benchmarks show higher memory latencies. For 447.dealII (32242 cycles) and 450.soplex (22199 cycles),

we identify that pathological bank access patterns yield more bank conlicts, thereby increasing the latency further.
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Fig. 11. BTB encryption results.

with 5K-cycle epoch, but it becomes 1.8% with 10K-cycle epoch. This demonstrates the impact of
the length of the epoch.

5.2 TAGE Results

TAGE has been one of the most accurate branch predictors for more than a decade. The latest
improvement, TAGE-SC-L [36], has multiple components: a default bimodal predictor, TAGE
predictors with diferent history lengths, a loop predictor, and a statistical corrector. The factors
that make the TAGE predictor most accurate are 1) tagged entries, 2) geometric (longer) history
lengths, 3) conidence metric, and 4) statistical corrector. We do not consider encryption for the
loop predictor and the statistical corrector. Indexing TAGE predictors is very similar to the BTB,
but diferent (longer) history lengths from the BHR are used for predictor tables. Thus, applying
encryption to the set indexing is straightforward. On the other hand, data encryption is simpler
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because we use a 3-bit saturating counter as opposed to a 47-bit target. We apply the two-level
encryption to TAGE predictors while the BTB remain intact in this section.
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Fig. 12. TAGE encryption results.

Figure 12a shows the performance impact of the TAGE predictor by diferent schemes, which
shows a similar trend to the BTB results in Section 5.1. Reindex outperforms RI+Enc and Reset in
shorter epoch lengths, but it has security risks. RI+Enc and Reset show very similar results. While the
probability of an incorrectly decrypted BTB entry coincidentally leading to a correct prediction is
extremely low, the direction prediction has a relatively higher chance of being correct even after
using the wrong key. This makes RI+Enc perform slightly better. BRB performs much better than Reset

by keeping the default bimodal predictor and the shortest history TAGE predictor, but it still shows
5 to 10% performance degradation in most epoch conigurations. On the other hand, BSUP shows
at most 0.1% performance degradation across all epoch lengths. The minimum latency to update
all TAGE predictors is 1536 cycles (3 cycles x 512 sub-epochs), and the average update latency of
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most benchmarks are under 5000 cycles, as shown in Figure 12c. Only two benchmarks have longer
than 5000-cycle update latencies (447.dealII: 10676, 403.gcc: 5038). As a result, most benchmarks can
complete the update process within a 5K-cycle epoch, as shown in Figure 12b.

5.3 Puting It All Together
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Fig. 13. Branch predictor encryption results.

We now evaluate the performance impact by the encryption on both BTB and TAGE predictors
combined. Figure 13a shows the performance results. The overall trend is similar to individual
predictor results, although the exact result is not the summation of both predictors because they
operate in lock-step. Reindex still outperforms RI+Enc and Reset despite security concerns. The penalty
of mispredictions in RI+Enc outweighs that of no-predictions in Reset for shorter epochs. BRB performs
much better than Reset, but we still observe signiicant performance degradation compared to the
baseline. With 5K-cycle epochs, we ind 23.7%, 31.9%, 28.5%, and 21.8% for Reindex, RI+Enc, Reset,
and BRB, respectively, while BSUP shows only 7.7% performance degradation. With 10K-cycle
epochs, other schemes still show around 20% performance degradation, but BSUP shows only
1.0% degradation by quickly updating entries with a new encryption key. Figure 13b shows the
normalized branch misses per kilo-instruction to the baseline (no encryption). We can conirm that
the increased branch misses because of an incomplete set update lead to performance degradation.

BSUP increases the dynamic power consumption because of extra accesses to the predictors.
Figure 14 shows the average access ratio of the BTB and the TAGE over the baseline. For the
4096-entry BTB, we need 4096 extra accesses per epoch. With a short epoch, additional accesses can
be very signiicant (2.95x in 5K-cycle epoch). TAGE has smaller increases because of its relatively
smaller size of the individual predictor table. The overhead by extra accesses becomes negligible at
longer epochs.
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Fig. 14. BTB and TAGE access increases.

We summarize our indings as follows:
◦ The performance degradation by losing branch prediction information upon key changes is not
trivial, in particular with shorter epochs.
◦ Reindex performs better than RI+Enc and Reset because of useful reuses despite security concerns.
◦ There is no clear answer of which is better: mispredictions in RI+Enc or no predictions in Reset. This
can vary based on micro-architecture implementation. Other factors, such as implementation
complexity and power consumption, should be considered.
◦ BRB performs better than Reset by keeping part of the prediction information.
◦ BRB on tagged structures (BTB) is less efective than tag-less structures (bimodal) because of the
coverage.
◦ BSUP is efective even with very short epochs by updating prediction information quickly, but
dynamic power consumption increases because of additional predictor accesses during an update.
◦ The hardware overhead of BRB is 5.88 KB (BTB: 1.88 KB, bimodal and TAGE predictors: 4 KB)
while BSUP requires 654 B (BTB: 48B, bimodal: 2B, TAGE: 90B, others: 2B, key table: 512B).

5.4 BTB Size Sensitivity Test

The size of the branch predictor table directly afects the set update latency. A larger predictor
can improve performance while the update takes longer. In this section, we perform a sensitivity
study on the BTB size because it shows more sensitive results than the TAGE in terms of diferent
epoch lengths. We vary the size of the L3 BTB from 1K to 16K entries (baseline: 4K). Figure 15
shows the results. Larger BTBs marginally improve performance (0.4% with 16K-entry) because the
instruction footprint for most of the evaluated benchmarks its well in 4K-entry. On the other hand,
the update latency will be proportional to the size. For example, the minimum update latency is
1152 cycles with 1K-entry, but it requires 9216 and 18432 cycles for 8K and 16K entries, respectively.
As a result, 8K and 16K-entry BTBs exhibit more than 10% performance degradation in 5K-cycle
epoch and perform worse than smaller BTBs in 5K- and 10K-cycle epochs. This observation leads to
an interesting design question: if a processor has very rigorous security requirements, and we want
to implement an encryption mechanism for the branch predictor, we may consider a smaller branch
predictor. Although this may increase the number of branch mispredictions in the steady-state, we
can protect the branch predictor more aggressively.

From this experiment, we partially observe how partitioning afects performance. With one-half
and one-quarter BTB entries, although the average across all suites shows little performance degra-
dation (2.5% with 1K entries), some integer benchmarks show signiicant performance degradation.
For example, 253.perlbmk shows 19.9% performance degradation with 1K-BTB. Based on how many
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Fig. 15. BTB size sensitivity results.

concurrent contexts an OS supports, efective size can be further decreased, thereby losing more
performance. Eicient dynamic partitioning can be useful, but it is beyond the scope of our work.

5.5 Bank-level Parallelism

We need to consider bank-level parallelism (BLP) to achieve quick set updates. Otherwise, the
number of bank conlicts will increase, which in turn increases the update latency. In this section, we
evaluate how BLP afects performance. Figure 16 shows the results. For BSUP (no BLP), we deliberately
swap sets within the same bank. Consequently, the minimum update latency for the BTB increases
from 4608 to 8704 (8 cycles to read, 1 cycle update, 8 cycles to write for 512 sub-epochs). We identify
that the update completion rate for the BTB decreases from 9.2% to 0% and 92.2% to 17.8% for 5K-
and 10K-cycle epochs, respectively. This results in 4.7% and 2.7% performance degradation. This
conirms the beneit of a BLP-aware set update mechanism.
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Fig. 16. BLP sensitivity results.

5.6 Instruction-based Epoch

We used cycle-based epochs so far because it can better demonstrate the relationship between
the set update latency and the length of an epoch. However, cycle-counts may not well represent
program behavior, such as instruction per cycle or branch intensity. In this section, we evaluate
mechanisms with instruction-based epochs. Figure 17 shows the results. We vary the branch
instruction count from 5K to 1M, which is chosen to be consistent with the cycle-based epoch. The
overall trend does not difer much with previous results: 1) shorter epoch conigurations incur
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signiicant performance degradation, 2) BRB outperforms Reset, and 3) BSUP greatly outperforms any
other schemes and performs well even with very short epochs.
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Fig. 17. Instruction-based epoch results.

6 RELATED WORK

6.1 Branch Predictor Side-Channel Atacks

Earlier branch predictor attacks target cryptographic algorithms [1ś3]. By measuring timing
diferences caused by the penalty of a mispredicted branch in cryptographic primitives that use a
data-dependent control low, secret key information can be revealed. Evtyushkin et al. [8] exploited
the BTB to bypass address space layout randomization, which adds random ofsets in high-order
bits of the virtual address of code and data segment, heap, and stack memory so that it is diicult for
attackers to identify the exact address of victim code. However, BTB collisions still occur since the
BTB is accessed by the low-order bits. Through timing side-channels, attackers identify which BTB
entry is evicted by the victim's known branch instruction, then the random ofset can be revealed.
The recent Spectre [20] variant 1 attack (array bounds check bypass) maliciously trains the

branch direction in the predictor so that prediction leads to wrong-path instructions. On the other
hand, the variant 2 attack (branch target injection) injects the target address of the malicious gadget
code in the BTB. Then, a cache side-channel is used to extract secret information. Lee et al. [22]
demonstrated a branch collision-based attack under the Intel SGX environment. Shadow branch
instructions are deliberately designed to access the branch predictor entry updated by the victim
application to infer ine-grained control low information. BranchScope [9] extends collision-based
attacks to infer the value of prediction counters using Prime+Probe, i.e., the adversary primes the
prediction counters with the desired value, schedules the victim to run a branch instruction, and
then tests the outcome of the shadow branch.
Return address stack (RAS) side-channels also exist. Upon function returns, the return address

is predicted using the top of the RAS. In recent attacks [21, 24], an adversary can manipulate the
value of the RAS so that a benign return instruction may speculatively redirect control low to
gadget code.

6.2 Branch Predictor Side-Channel Mitigations

6.2.1 Sotware-based Mitigations. Data-dependent branches can be algorithmically pruned. Also,
conditional branches can be eliminated using conditional move instructions (cmov). However, these
approaches are very algorithm-speciic and may not apply to all applications. Also, if there are
signiicant latency diferences between branch instructions, this can be exploited using a timing
side-channel attack. Another software mitigation is to obfuscate the control low. For example,
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ZigZagger [22] executes all branch instructions in if-else clauses. The branch target will be set
using cmov instruction. At the end of a zig-zag pattern, it performs an indirect branch to the target.
Also, control low randomization [15] can be used such that jump blocks (or trampolines) will be
executed regardless of the actual control low by transforming conditional branches to unconditional
indirect branches. To prevent reverse-engineering of trampolines, addresses of trampolines can be
randomized. Retpoline [42] is proposed to mitigate Spectre variant 2 attacks, which is a software
construct to isolate indirect branches from speculative execution. Speculative load hardening [6]
implements a check for sensitive loads using branchless code, which is dependent on the opposite
outcome of a conditional branch. Consequently, the address of load instructions in a wrong-path
will be invalidated. These mechanisms proactively mitigate potential security breaches, so they
can be efective with a higher performance overhead. OS-based time protection [11] can provide
temporal isolation among processes by lushing on-core microarchitectures state on domain switch.

6.2.2 Tagged Branch Predictor. Branch predictors are tag-less structures in terms of contexts. TAGE
predictors [36] use tags to improve prediction accuracy, but they cannot diferentiate accesses from
diferent contexts. To diferentiate, we can add context IDs for each branch predictor entry. For
example, Intel uses a 12-bit process-context ID (PCID), and Arm uses an 8-bit address space ID
(ASID). In some cases, we need to diferentiate the virtualization environment and privilege level.9

Although adding identiiers will improve security, it incurs signiicant hardware overhead. For
example, if we add a 20-bit identiier for a 1K-entry predictor, it requires a 2.5KB of storage.

Instead, we can reduce the overhead by keeping active contexts only. We maintain a small table
that keeps full identiiers. Each branch predictor entry now keeps an index of the table rather than
full identiiers. This can signiicantly reduce the storage overhead. However, false matching can
occur because we reuse table indices.

6.2.3 Partitioning. Partitioning is a popular technique to provide isolation, but it reduces the efec-
tive size of a structure. It also has a scalability problem with a larger number of concurrent contexts.
Without a smart dynamic partitioning mechanism, performance may be degraded signiicantly.

6.2.4 Randomization. An adversary can create branch collisions because the same index (hash)
function is used for all contexts. If we use a diferent index function for each context, branch
predictor accesses can be randomized. Even though an adversary manipulates the BHR and the
low-order bits of the PC to match a target victim instruction, the resulting set ID will be diferent
for each context.

6.2.5 Encryption. ScatterCache [44] uses an encryption mechanism to pseudo-randomly form a
cache set with cache lines from diferent cache sets in the original cache construction. Also, this
mapping changes based on security domains and their keys.

6.2.6 Checkpoint. Branch retention bufer (BRB) [43] is the state-of-the-art branch predictor side-
channel mitigation. BRB maintains a small checkpoint (1.5 to 3KB) of branch predictor states for
each context upon context switches and restores it once the context becomes active. Meanwhile,
BRB lushes most components of the branch predictor. Checkpoint facilitates quick branch predictor
warm-up. BRB can be considered as a partitioning mechanism since large structures are split into
multiple partitions for each context. However, the storage overhead in checkpointing grows with
more contexts. For faster switching, we cannot aggressively apply power-gating, so it increases
leakage power. Otherwise, the corresponding table needs to be powered up upon context switches,
which requires special power gating logic and additional latencies.

9Intel uses a 16-bit virtual processor ID (VPID) and four protection levels (Ring 0-3). Arm uses an 8- or 16-bit virtual machine

ID (VMID) and also four exception levels (EL0-3).
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6.2.7 Spectre Mitigation. Spectre attacks [20] set up the branch predictor to initiate the attack
and use other side-channels such as TLB, page table, instruction and data caches, to transmit the
secret information. Various mechanisms [19, 34, 35, 40, 46, 49] have been proposed to protect
micro-architectural structures other than the branch predictor against Spectre attacks by delaying
micro-architectural changes from speculative executions [19, 46, 49], recovering previous states,
and randomizing accesses [34].

7 CONCLUSIONS

Side-channel attacks expose signiicant vulnerabilities in modern processors. In this paper, we
proposed a two-level dynamic encryption mechanism for side-channel mitigation to protect mod-
ern branch predictors. The per-context encryption key is dynamically changed to overcome the
weakness of static encryption. To alleviate performance degradation caused by the loss of predic-
tion information upon key changes, we proposed a light-weight set update mechanism that also
fully utilizes bank-level-parallelism in branch predictors. We show that our BLP-aware set update
mechanism performs close to the insecure baseline even with very short epochs, 7.7% and 1.0%
slowdown for 5K- and 10K-cycle epochs, respectively, while other mechanisms show signiicantly
higher performance overhead.
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